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Renormalization or rescaling transformations generally produce more com- 
plicated interactions than are present in the initial Hamiltonian.  After each 
rescaling it is necessary to truncate the Hamil tonian to make the next 
rescaling mathematically tractable. One is faced with the problem of 
choosing the coupling constants of the truncated Hamil tonian to obtain 
the best approximation. Following ideas of McMillan, we consider trunca- 
tion procedures which give lower and upper bounds to the free energy. 
Conditions for optimal lower- and upper-bound truncations are derived. 
These optimal truncations are seen to yield exact results for the free energy 
in both the high- and low-temperature limits. Some of the problems in- 
herent in all renormalizat ion transformations that incorporate an optimal 
lower- or upper-bound truncat ion are discussed. Calculations for the two- 
dimensional Ising model based on renormalization transformations which 
combine decimation and an optimal t runcat ion are described. Even in the 
simplest approximation in which only nearest-neighbor interactions are 
retained the free energy is obtained to an accuracy of better than 1% for all 
temperatures if an optimal t runcat ion rather  than an ordinary t runcat ion 
with no readjustment of the coupling constants is made. However, the simp- 
lest calculations involving optimal truncations are less successful in pre- 
dicting derivatives of the free energy and critical exponents than the free 
energy itself. 

KEY WORDS: Renormalization transformations; optimal bounds; Ising 
model. 

1. I N T R O D U C T I O N  

T h e  a p p l i c a t i o n  o f  v a r i a t i o n a l  p r i n c i p l e s  in  r e n o r m a l i z a t i o n - g r o u p  ca l cu l a -  

t i o n s  was  p i o n e e r e d  b y  K a d a n o f f Y  -3~ H e  i n t r o d u c e d  t he  a p p r o x i m a t i o n  o f  
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translating bonds to facilitate the rescaling operation and showed that re- 
normalization transformations only involving this approximation give lower 
bounds to the exact free energy. Kadanoff  constructed an ingenious lower- 
bound variational transformation (~,2) which in the meantime has been 
applied to many models, a He showed (3~ how Migdal's renormalization 
transformation (5~ can be understood using bond-translation ideas. Kada-  
noff (1-3) also pointed out that renormalization transformations based on the 
first-order cumulant expansion give upper bounds to the free energy. A 
number of  authors ~6-8~ have used this fact to construct optimal first-order 
cumulant approximations. 

In this paper we consider variational approximations of  a different 
kind. Renormalization or rescaling transformations generally produce more 
complicated interactions than are present in the initial Hamiltonian of 
interest. To carry out the renormalization transformation repeatedly, it is 
necessary to truncate the Hamiltonian after each rescaling to make the next 
rescaling mathematically tractable. In this paper we are concerned with 
optimal truncation procedures. How should one choose the coupling 
constants of  the truncated Hamiltonian to obtain the best approxima- 
tion ? 

McMillan (9~ has used lower- and upper-bound variational principles for 
the free energy in devising truncation procedures in calculations for the X - Y  
model in two dimensions. In Section 2 we review these variational principles 
and use them to derive conditions defining optimal lower- and upper-bound 
truncations. Renormalization transformations consisting of a rescaling 
transformation which leaves the ground-state energy invariant followed by 
an optimal truncation are shown to yield exact results for the free energy 
in both the low- and high-temperature limits. Some of the problems inherent 
in all renormalization transformations that incorporate lower- and upper- 
bound optimal truncations are discussed. In Section 3 we present some 
simple calculations for the two-dimensional Ising model based on renormal- 
ization transformations which combine decimation ~~ and an optimal 
truncation. Even in the crudest approximation in which only nearest-neighbor 
interactions are retained the free energy is reproduced to an accuracy of 
better than 1 ~  for all temperatures if an optimal lower- or upper-bound 
truncation rather than an ordinary truncation with no readjustment of  the 
nearest-neighbor coupling is used. However, the simplest calculations we 
carried out using optimal truncations are less successful in describing the 
derivatives of  the free energy and critical exponents than the free energy 
itself. Section 4 contains a discussion of  the usefulness of optimal truncations 
as a calculational tool and other concluding remarks. 

a See Ref. 4 for a list of other applications. 
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2. O P T I M A L  UPPER-  A N D  L O W E R - B O U N D  T R U N C A T I O N S  

Assume that a rescaling transformation has been carried out replacing 
the Hamiltonian H(~) for the set of  spin variables ~ with the Hamiltonian 
/7(e') for a smaller number of  new spin variables ~'. The Hamiltonian /7 
contains more complicated interactions than/4 ,  and one wishes to replace/7  
with a truncated Hamiltonian H' which contains a restricted subset of  
interactions and has optimally adjusted coupling constants. 

Following McMillan, (9) we now derive sufficient conditions that the 
truncation approximation give an upper or lower bound to the free energy. 
From the inequality e x /> 1 + x it follows that the partition functions Z 
computed f rom t7 and H' satisfy the inequality 

Z[H'] = ~ e w(~'> >/ Z[/T](1 + ( H '  - /77;~) (1) 
{a '}  

Defining the free energy f as - I n  Z/(number of  spins) in the thermodynamic 
limit, one finds the following sufficient condition for a truncation which 
gives a lower bound to the free energy: 

f[H'] <~ f [ /7 ]  if ( H '  - /7)h  = 0 (2) 

In terchanging/7  and H '  gives an analogous condition for an upper-bound 
truncation: 

f[H'] >>. f [ /7 ]  if ( H '  - /7)n, = 0 (3) 

H'(cr') can be expanded in the form 

H'((r ')  = Ng + ~ K~'S.(&) (4) 
c~ 

where N is the number of o spins, g is a constant, the K~' are coupling con- 
stants, and ~ runs over the subset of  interactions S~(~') retained in the 
truncation. Max imiz ing f [H ' ]  with respect to K~' and with g chosen so that 
(2) is satisfied, one finds the following sufficient conditions for an optimal 
lower-bound truncation: 

( H '  - /7)h = 0 (5) 

(S~)w - (S~)z? = 0 (6) 

Similarly, one has an optimal upper-bound truncation if the equations 

( H '  - /7)w = 0 (7) 

(&(H' -/7)>., = 0 ( s )  

are fulfilled. 
When (5)-(6) or (7)-(8) are combined with the rescaling transformation 

relat ing/7 to H, a full renormalization step consisting of a rescaling followed 
by an optimal truncation is determined. Almost all renormalization trans- 
formations give exact results for the free energy in the high-temperature 
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limit, in which the spins are effectively noninteracting. Exact results for the 
free energy are obtained in the low-temperature limit as well if the rescaling 
transformation which precedes the optimal truncation leaves the ground- 
state energy invariant (decimation transformations and decimations com- 
bined with bond translation have this property). In the low-temperature 
limit the free energy equals the ground-state energy. Equations (5) and (7) 
imply the invariance of the ground-state energy under an optimal truncation 
in the low-temperature limit. An ordinary truncation without readjustment 
of the coupling constants does not leave the ground-state energy invariant, 
in general. 

There are a number of inherent problems in all renormalization trans- 
formations that include an optimal truncation. In general, it is impossible 
to write an explicit formula in terms of coupling constants for the trans- 
formation, since evaluating the expectation values in (5)-(8) is comparable 
in complexity with exactly evaluating the partition function of the original 
Hamiltonian. An additional difficulty with the full transformation is that it 
is necessarily nonanalytic in the coupling constants, since the expectation 
values in (5)-(8) are singular on the critical surfaces of phase transitions. A 
large class of variational renormalization transformations suffers from this 
same defect (7'11~ if the variational parameters are allowed to change with 
each renormalization step as in our derivation of (5)-(8). In practice one 
can avoid these problems by evaluating the expectation values for a large 
but finite cluster, although it is then no longer clear that the procedure 
really bounds the free energy. Also, the finite-cluster approach is not com- 
pletely self-consistent, since the finite-cluster expectation values in (5)-(8) 
differ from the expectation values obtained by taking derivatives of the 
free energy calculated using the renormalization transformation. 

3. RESULTS FOR THE T W O - D I M E N S I O N A L  IS ING M O D E L  

In the case of the two-dimensional Ising model on the square lattice 
with nearest-neighbor interactions K a decimation transformation (1~ 
eliminating every second spin can be carried out exactly. The transformation 
yields a constant contribution to the Hamiltonian Ko for each of the sur- 
viving spins, a new next-nearest-neighbor coupling /~, a second-neighbor 
coupling/~/2, and a four-spin coupling/~4 given by 

/~o(K) = ~ In cosh 4K + �89 in cosh 2K + In 2 (9) 

K(K) = �88 In cosh 4K (10) 

/~(K) = �89 In cosh 4K - �89 In cosh 2K (11) 
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Because of the second-neighbor and four-spin interactions, additional exact 
decimation transformations cannot be performed. In the first calculation to 
be described, optimal truncations eliminating all but the nearest-neighbor 
interaction are made after each decimation so that a subsequent decimation 
can be carried out. 

Combining the exact decimation with a lower-bound optimal truncation 
retaining only nearest-neighbor couplings, one finds that condition (6) 
implies a recurrence relation of the form 

(~1%)K, = (eaaa)x (12) 

for the nearest-neighbor coupling. In (12) spins 1 and 2 are nearest neighbors 
and spins 1 and 3 next-nearest neighbors. The expectation values are evaluated 
for infinite Ising systems with nearest-neighbor couplings K' and K, respec- 
tively. In obtaining (12) we used the fact that second-neighbor spins become 
first neighbors if a decimation is carried out, i.e., ( ~ % ) h  = @z%)~- The 
lower-bound approximation to the free energy may be calculated recursively 
with the formula 

fA(K) = - g ( K )  + �89 (13) 

where g(K), which is determined by (5) and (9), may be put in the form 

1(/70 /T d~2o/dK~ - ( -~ = - 2K4\---d-~! (%%)K g(K) 72 d'~--~/dK] + 

4 d/74/dK] + i 
(14) 

In (14), (%%) denotes the third-neighbor spin correlation. 
Combining the exact decimation with an upper-bound optimal trans- 

formation retaining only nearest-neighbor couplings, one finds that (8) 
implies the recurrence relation 

R(d/dK')(a~%)K, + K4(d/dK )(a~%aa%)K, 
K' = / 7  + (15) 

2(d/dK')@w2)K, 

with 

g(K) = �89 + ( / 7 -  K')@rlcra) K, q- �89 K, q- �89 

(16) 

All the two-spin expectation values in (12)-(16) are known exactly from 
the work of Onsager and others. (.2-*~) The four-spin expectation value may 
be related to the first- and third-neighbor spin-spin correlation functions 
on the dual lattice by using a transformation due to Watson. (is) In obtain- 
ing the first set of results to be described, we used exact expectation values 
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Fig. 1. Curve 1 shows the exact free energy. Curve 2 is obtained by combining the 
decimation t ransformation with an ordinary t runcat ion eliminating second-neighbor 
and four-spin interactions. Curve 3 results when the decimation is used in conjunction 
with a bond rotat ion approximation for the second-neighbor interactions and an 
ordinary t runcat ion to eliminate the four-spin couplings. 

in the recurrence formulas, so that the optimal truncation was the only 
approximation in the calculation. 

Curve 1 in Fig. 1 shows the exact Ising free energy calculated by 
Onsager. Curve 2 shows the free energy obtained with a renormalization 
transformation consisting of a decimation transformation given by (9)-(11) 
followed by an ordinary truncation K '  = I72(K), g ( K )  = /~0(K)/2 in which 
the second-neighbor and four-spin couplings are simply discarded without 
adjustment of the nearest-neighbor coupling or the constant term. The free 
energy calculated in this approximation deviates from the exact free energy 
for large K (low temperature) since the ordinary truncation changes the 
ground-state energy. The recurrence relation for the nearest-neighbor 
coupling has no critical fixed point at a finite, nonzero value K*. Any finite 
initial value of K is mapped toward the attractive fixed point K* = 0. 

Using optimal lower- and upper-bound truncations rather than the 
ordinary truncation produces a striking improvement in the calculated free 
energy. The deviations of the lower- and upper-bound results from the 
exact free energy are shown in Fig. 2. The two bounds differ from the exact 
result by less than 1 70 for all K. The deviations go to zero in the small- and 
large-K limits. The maximum deviation of the lower and upper bound 
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Fig. 2. The upper and lower curves show the deviation of the upper- and lower-bound 
free energies from the exact result. The approximate free energies were calculated using 
optimal truncations to eliminate all but the nearest neighbor couplings. Exact results 
for the correlation functions were used in (12), (14) and (15), (16). 

curves occurs at and near the Onsager critical coupling Kc ~ = �89 In(1 + ~/2) 
= 0.441, respectively. 

Neither (12) nor  (15) has the usual fixed-point topology one expects 
for  a ferromagnetically coupled Ising system with attractive fixed points at 
K = 0 and K = oc and a repulsive fixed point  at an intermediate critical 
value o f  K. Since the nearest-neighbor correlation function exceeds the 
second-neighbor correlation function at the same value o f  K, it is clear that  
the lower-bound recurrence relation (12) maps any finite K toward a fixed 
point  at K = 0. In addition to attractive fixed points at K = 0 and K = ~ ,  
the upper  bound recurrence relation (15) has weakly repulsive fixed points 
at K = 0.439 and 0.490 and a weakly attractive fixed point  at K = 0.443. 

Due to the unusual fixed-point topology and the singular dependence o f  
the recurrence relation on the coupling constants, bo th  approximations yield 
grossly inaccurate descriptions of  the singularity structure o f  the free energy. 
Fo r  example, since the derivative o f  the exact first- and second-neighbor 
correlation functions with respect to the first-neighbor coupling diverge 
logarithmically at K~ ~ (12)-(14) imply that in the lower-bound approxima-  
t ion dfA(K)/dK diverges logarithmically at Kc ~ and that d2fA(K)/dK 2 diverges 
logarithmically at an infinite number  of  values o f  K > Kc ~ which are mapped 
onto Kc ~ by one or more applications o f  the recurrence relation (12). 
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Fig. 3. Same as Fig. 2 except that the correlation functions in (12), (14) and (15), (16) 
were evaluated for finite clusters with periodic boundary conditions. Clusters of 32 
and 16 spins were used for (12), (14) and (15), (16), respectively. 

Normally,  exact correlation functions are not  available for setting up 
optimal truncation schemes. Figure 3 shows the deviations o f  the lower- 
and upper-bound free energies f rom the exact free energy with the expecta- 
t ion values in (12), (14) and (15), (16) evaluated for  32- and 16-spin clusters ~ 
with periodic boundaries,  respectively. Again less than 1~o deviation is 
f o u n d #  In  the finite-cluster approximat ion the expectation values in (12)-(16) 
are nonsingular  functions o f  the coupling constants. The lower-bound recur- 
sion relation (12) maps all finite K toward a fixed point  at K = 0. Thus the 
lower-bound free energy is a nonsingular  function o f  K. Instead of  the three 
fixed points at finite, nonzero values o f  K mentioned above, the upper-bound 
recursion formula has a single repulsive fixed point  at K = 0.511 in the 
finite-cluster approximation.  

To obtain a satisfactory description o f  the leading singular behavior  o f  
the free energy it is p robab ly  impor tan t  to retain other couplings besides the 
nearest-neighbor coupling in the truncated Hamiltonian.  One should begin 

4 To simplify the numerical computations, the 32-spin cluster was reduced to a 16-spin 
cluster using an exact decimation transformation. 

5 In the finite-cluster approximation the derivatives of the different correlation functions 
in (15) have finite peaks at different values of K instead of logarithmic divergences at 
the same critical value. This is presumably the source of the structure in the upper 
curve between K = 0.4 and 0,5 in Fig. 3. 
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Fig. 4. When half of the second-neighbor bonds (dashed lines) in (a) are rotated as in 
(b), the central spin can be eliminated with a decimation transformation. 

with a rescaling transformation which when combined with an ordinary 
truncation already has the expected three fixed points before trying to im- 
prove matters with an optimal truncation. Following McMillan, (9~ we now 
consider a rescaling transformation which with the help of  a bond-shifting 
approximation can be applied to truncated Hamiltonians with both nearest- 
and next-nearest-neighbor interactions. 

Figure 4 shows a square lattice with bonds between first and second 
neJighbors. I f  half of  the second-neighbor bonds are rotated as in Fig. 4b, 
the spins at the centers of  the squares of  doubled second-neighbor bonds can 
be decimated. The decimation yields new first- and second-neighbor bonds 
and a four-spin interaction. Once the four-spin interaction is eliminated by 
truncating the Hamiltonian, the process of  bond rotation followed by 
decimation can be repeated. 

I f  an ordinary truncation without adjustment of  the first- or second- 
neighbor couplings or the constant term is used to eliminate the four-spin 
coupling, one finds that the first- and second-neighbor couplings K and L 
satisfy the recurrence relations 

K '  = / ~ ( K )  + 2L (17) 

~' = _g(K)/2 (18) 

The constant term contributing to the free energy is given by 

g(K, L) = /~0(K)/2 (19) 

Here/~0 and /~  are defined by (9) and (10). Curve 3 in Fig. 1 shows the free 
energy in this approximation. Since both the bond rotation and the ordinary 
truncation are lower-bound approximations, 6 curve 3 lies below curve 1. 
Since the ground-state energy is changed by the ordinary truncation, the 

6 The bond-rotation approximation belongs to the class of lower-bound bond-shifting 
approximations considered by KadanoffJ I-3~ Since -K4 defined by (11) is negative and 
the expectation value (~lcr2~r3%) is positive for a ferromagnetically coupled system, 
(1) implies that the ordinary truncation is a lower-bound approximation. 
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approximate free energy deviates from the exact result in the large-K limit. 
The discrepancy for large K would disappear if an optimal rather than an 
ordinary truncation were made. 

Equations (17)-(19) describe the singular structure of the free energy 
more successfully than the other approximations we have considered so far. 
In addition to attractive fixed points at the origin and at infinity, there is a 
repulsive critical fixed point at K * =  4 L * =  0.305. The critical nearest- 
neighbor coupling Kc = 0.403 maps onto this fixed point as compared with 
the exact value 0.441. The scaling index y, which determines the exponent 
characterizing the divergence in the specific heat by 2 - ~ = d/y, has the 
value 1.03 as compared with the exact result y = 1. 

If  the four-spin interaction is eliminated with an optimal lower-bound 
truncation instead of  an ordinary truncation, (6) implies that K and L 
satisfy the recurrence relations 

@lcr2>K',L',0 = <elO27&K~+2L,~(~)/2,~,</~> (20) 

<~l~a>~,,L,,0 = <Cq~r3>/?~K~+2L,~K~/2,~,<K ) (21) 

where the three subscripts of the angular brackets denote the first-neighbor, 
second-neighbor, and four-spin interactions for which the correlation function 
is evaluated, and /~  a n d / ~  are defined by (10) and (11). 

We have carried out calculations using a 16-spin cluster with periodic 
boundary conditions (probably too small a cluster to give very reliable 
results for the second-neighbor correlation) to evaluate the expectation 
values in (20) and (21). One finds attractive fixed points at the origin and at 
infinity and a repulsive critical fixed point at K* = 0.312, L* = 0.082. The 
critical nearest-neighbor coupling Ko = 0.423 maps onto this fixed point. 
The scaling index y associated with the fixed point has the value y = 0.919. 
Thus, using an optimal lower-bound truncation in a rather crude finite- 
cluster approximation instead of an ordinary truncation is seen to improve 
the value of K~ and to worsen the value of y. It is no t  clear, of course, to 
what extent the excellent value of y obtained with the ordinary truncation 
is fortuitous. 

4. C O N C L U S I O N  

Optimal upper- and lower-bound truncations appear to be highly effec- 
tive in calculations of the free energy. Even in the simplest approximation, 
in which only nearest-neighbor couplings are kept, quite accurate results 
for the free energy of the two-dimensional Ising model are obtained. Because 
of the variational principle it is clear that retaining more coupling constants 
decreases the error caused by truncating the Hamiltonian. In general the 
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expectation values in (5)-(8) must be evaluated for finite clusters, but our 
results suggest that small clusters are sufficient. 

In systems which exhibit a continuous transition one is normally more 
interested in the derivatives of the free energy and the critical exponents 
than in the free energy itself. An accurate free energy does not, of course, 
guarantee accurate derivatives. Renormalization transformations involving 
an optimal truncation have the same defect as a large class of other varia- 
tional transformations: the transformations involve functions of the coupling 
constants which are singular at the critical fixed point. The use of finite- 
cluster expectation values in (5)-(8) is not a self-consistent approximation, 
but avoids this difficulty. Our results indicate that in two-dimensional systems 
it is certainly essential to retain other couplings besides the nearest-neighbor 
coupling if reliable information about critical behavior is desired. The single 
calculation we carried out retaining both first- and second-neighbor couplings 
was somewhat inconclusive. Use of an optimal rather than an ordinary 
truncation improved one critical quantity and worsened another. Additional 
work with more refined approximations is necessary before one can judge the 
usefulness of the optimal truncation procedures in calculations of derivatives 
of  the free energy and critical exponents as opposed to the free energy itself. 
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